Главная  Промышленность 

0 1 2 3 4 5 [ 6 ] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

6я. МПа


О 2 4 Б 8 т

Легирующий элемент, %

Рис. 12.10. Влияние легирующих элементов на механические свойства магния при 20 °С (прессованные прутки)

решеток Mg и Zr„ (ГПУ с а = 0,3223 нм; с = 0,5123 нм). Кроме того, цирконий и марганец способствуют устранению или значительному уменьшению влияния примесей железа и никеля на свойства сплавов. Они образуют с этими элементами промежуточные фазы большой плотности, которые при кристаллизации выпадают на дно тигля, очищая


О 5 /0 15 20% Легирующий элемент

Рис. 12.11. Влияние легирующих элементов на твердость магния при 250 °С

тем самым сплавы от вредных примесей.

Увеличение растворимости легирующих элементов в магнии с повышением температуры (рис. 12.12) дает возможность упрочнять магниевые сплавы с помощью закалки и искусственного старения. Однако термическая обработка магниевых сплавов затруднена из-за замедленных диффузионных процессов в магниевом твердом растворе. Малая скорость диффузии требует больших выдержек при нагреве под закалку (до 16-30 ч) для растворения вторичных фаз. Благодаря этому такие сплавы можно закаливать на воздухе, они не склонны к естественному старению. При искусственном старении необходимы высокие температуры (до 200 °С) и большие вьщержки (до 16-24 ч). Наибольшее упрочнение термической обработкой достигается у сплавов магния, легированных неодимом. В этом случае при распаде пересыщенного твердого раствора в зависимости от температуры и времени старения могут образоваться зоны Гинье-Престона, метастабильные и стабильные упрочняющие фазы, тогда как в некоторых других сплавах (например, сплавах системы Mg-Al-Zn) при старении сразу появляются стабильные фазы.

Временное сопротивление и особенно предел текучести магниевых сплавов значительно повышаются с помощью термомеханической обработки, которая состоит в пластической деформации закаленного сплава перед его старением.

Из других видов термической обработки к магниевым сплавам применимы различные виды отжига: гомогенизация, рекристаллизационный отжиг и отжиг для снятия остаточных напряжений. Для деформируемых сплавов диффузионный отжиг совмещают с нагревом для горячей обработки давлением. Температура рекристаллизации магниевых сплавов в зависимости от их состава находится в интервале 150-300°С, а рекристалли-зационного отжига-соответственно в




О 2 В 8 10 12 П

Легирующий элемент, %

Рис. 12.12. Растворимость легирующих элементов в магнии

интервале 250-350 °С. Более высокие температуры вызывают рост зерна и понижение механических свойств. Отжиг для снятия остаточных напряжений проводят при температурах ниже температур рекристаллизации.

Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), легко шлифуются и полируются. Высокие скорости резания и небольшой расход энергии способствуют снижению стоимости обработки резанием деталей из магниевых сплавов по сравнению с другими сплавами. Они удовлетворительно свариваются контактной роликовой и дуговой сваркой. Дуговую сварку рекомендуется проводить в защитной среде из инертных газов. Прочность сварных швов деформируемых сплавов составляет 90% от прочности основного металла.

К недостаткам магниевых сплавов, наряду с низкой коррозионной стойкостью и малым модулем упругости, следует отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их приготовлении. Небольшие добавки бериллия (0,02-0,05%) уменьшают склонность к окисляемости, кальция (до 0,2%)-к образованию микрорыхлот в отливках. Плавку и разливку маг-

ниевых сплавов ведут под специальными флюсами.

По технологии изготовления магниевые сплавы подразделяют на литейные (МЛ) и деформируемые (МА); по механическим свойствам-на сплавы невысокой и средней прочности, высокопрочные и жаропрочные; по склонности к упрочнению с помощью термической обработки-на сплавы, упрочняемые и неупрочняемые термической обработкой. Для повышения пластичности магниевых сплавов их производят с пониженным содержанием вредных примесей Fe, Ni, Си (повышенной чистоты). В этом случае к марке сплава добавляют строчные буквы «пч», например, МЛ5пч или МА2пч.

Деформируемые магниевые сплавы. Химический состав (ГОСТ 14957-76) и типичные механические свойства некоторых деформируемых сплавов представлены в табл. 12.5. Среди деформируемых сплавов наибольшей прочностью обладают сплавы магния с алюминием и сплавы магния с цинком, легированные цирконием, кадмием, серебром, редкоземельными металлами.

Сплавы магния с алюминием содержат 0,2-1,5% Zn (МА5). Алюминий и цинк обладают высокой растворимостью в магнии. Повышение их содержания в сплаве приводит к увеличению прочности сначала в результате увеличения концентрации твердого раствора, а затем благодаря появлению вторичных фаз М§4А1з и MgjZnjAlz. Однако в промышленные сплавы не вводят более 10% А1 и более 6% Zn, так как большое количество промежуточных фаз вызывает снижение пластичности С понижением температуры концентрация твердого раствора уменьшается (см. рис. 12.12), что дает возможность упрочнять сплавы с помощью закалки и старения. Сравнительно небольшой эффект упрочнения (около 30%) этих сплавов объясняется тем, что при распаде твердого раствора образуются сразу стабильные фазы с относительно большим



ТАБЛИЦА 12.5. Химический состав и механические свойства магниевых сплавов

Сплав

Содержание элементов (остальное Mg), %

Механические свойства

Прочие

Деформируемые сплавы (ГОСТ 14957 - 76)

МА5* МАП*

МА14* МА19*

МЛ5* МЛ8*

МЛ12* МЛ9

МЛЮ МЛ15

0,15-0,5 1,5-2,5

0,2-0,8

5-6 5,5-7

7,8-9,2

2,5-4 Nd 0,1-0,25 Ni 0,3-0,9 Zr 0,5-1 Zr 0,2-1 Cd 1,4-2 Nd

0,15-0,5

Литейные сплавы (ГОСТ 2856-79) 7,5-9

0,2-0,8 5,5-6,6

0,1-0,7 4-5

0,7-1,1 Zr, 0,2-0,8 Cd 0,6-1,1 Zr 0,4-1 Zr, 0,2-0,8 Y 1,9-2,6 Nd 0,4-1 Zr, 2,2-2,8 Nd 0,7-1,1 Zr, 0,6-1,2 La

* Свойства приведены после закалки и старения; для других литых -в литом состоянии.

расстоянием между частицами. Причем упрочняющие фазы в этих сплавах обладают большой склонностью к коагуляции, которая начинается до достижения полного распада пересыщенного твердого раствора.

Цинк и алюминий придают сплавам хорошую технологическую пластичность, что позволяет изготовлять из них кованые и штампованные детали сложной формы (например, крыльчатки и жалюзи капота самолета). Для устранения вредного влияния железа сплавы дополнительно легируют марганцем. Сплавы с низким содержанием алюминия и поэтому небольшим количеством вторичных фаз в структуре дают незначительное упрочнение при закалке и старении. Они применяются в горячепрес-сованном или отожженном состояниях. Сплавы с высоким содержанием алюминия, дополнительно легированные сереб-

ром и кадмием (МАЮ), обладают самой высокой прочностью (Ств = 430 МПа) и удельной прочностью (24 км) среди магниевых сплавов.

Кадмий неограниченно растворяется в магнии и не образует собственных фаз в сплавах магния с алюминием. Легируя твердый раствор, кадмий повьгшает механические свойства и технологическую пластичность сплавов. Серебро обладает хотя и ограниченной, но значительной (15,5% по массе) растворимостью в магнии. Высокая прочность этих сплавов объясняется наличием высоколегированного алюминием, серебром и кадмием твердого раствора и большого количества упрочняющей фазы Mg4Al3.

Высокопрочньге сплавы магния с цинком дополнительно легируют цирконием (МА14), кадмием, РЗМ (МА15, МА19 и др.). Магний образует с цинком твердый раствор, концентрация которо-



0 1 2 3 4 5 [ 6 ] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61