Главная  Промышленность 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [ 21 ] 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


О О 20 W 60 80 то

Содержание углеродных волокон, %

Рис. 13.32. Зависимость механических свойств карбостекловолокнита от соотношения углеродных и стеклянных волокон (общее содержание наполнителя 62 об. %)

бильный коэффициент трения и обладают хорошей износостойкостью. Температурный коэффициент линейного расширения карбоволокнитов в интервале 20-120 °С близок к нулю.

К недостаткам карбоволокнитов относят низкую прочность при сжатии и межслойном сдвиге. Специальная обработка поверхности волокон (окисление, травление, вискеризация) повышает эти характеристики.

Бороволокниты характеризуются высокими пределами прочности при растяжении, сжатии, сдвиге, твердостью и модулем упругости.

Зависимость механических свойств бороволокнитов от объемного содержания волокон представлена на рис. 13.33.

te, Чизг, Па

Е, Б, ГПа

15 50 25

0 О

уизг /

1 . L

7,5 5,0 2,5 О -Iff

ifO 50 ВО 70 80 Содертание борных Вплпкан, %

Рис. 13.33. Зависимость механических свойств бороволокнита КМБ-1 от объемного содержания борных волокон

Однако свойства бороволокнитов зависят не только от свойств волокон и их объемного содержания, но и в большой степени от их геометрии и диаметра. Так, ячеистая структура волокна обеспечивает высокую прочность при сдвиге и срезе. Большой диаметр волокон и высокий модуль упругости придают устойчивость боропластику и способствуют повышению прочности при сжатии. Вместе с тем большой диаметр волокон вызывает необходимость увеличения эффективной длины волокон, повышает чувствительность к разрушению отдельных волокон, уменьшает временное сопротивление по сравнению с тонковолокнистым материалом.

Органоволокниты обладают высокой удельной прочностью в сочетании с хорошими пластичностью и ударной вязкостью. Характерной особенностью ор-гановолокнитов является единая полимерная природа матриц и армирующих волокон. Матрица и наполнитель имеют близкие значения температурных коэффициентов линейного расширения, им свойственны химическое взаимодействие и прочная связь. Органоволокниты имеют бездефектную и практически беспористую структуру (пористость 1-3%), хорошую стабильность механических свойств. Слабым местом при нагружений материала является не столько граница раздела между волокном и матрицей, сколько межмолекулярные связи в самом волокне.

Структура волокна неоднородна. Она состоит из ориентированных макромолекул и их совокупности-фибрилл. Большая степень их ориентации в направлении оси волокон обеспечивает волокнам высокие прочность и жесткость при растяжении в этом направлении. Однако неоднородность структуры волокон обусловливает различные напряженные состояния в отдельных ее элементах. Между ними возникают напряжения сдвига, которые приводят сначала к расщеплению волокна вдоль оси, а затем-к разрущению. Такой меха-



низм разрыва волокон вызывает большую работу разрушения композиционного материала в целом. Это характеризует высокую прочность при статическом и динамическом нагружении. Органоволокниты, особенно с эластичным наполнителем, имеют очень высокую ударную вязкость (600-700 кДж/м). Слабые межмолекулярные связи являются причиной низкой прочности и жесткости при сжатии. При этом предельная деформация при сжатии определяется не разрушением волокон, а их искривлением. Дополнительное армирование органоволокнитов волокнами, затрудняющими это искривление, например, углеродными или борными, повышает прочность при сжатии.

Композиционные материалы на металлической основе. Преимуществом композиционных материалов на металлической основе являются более высокие значения характеристик, зависящих от свойств матрицы. Это прежде всего временное сопротивление и модуль упругости при растяжении в направлении, перпендикулярном оси армирующих волокон, прочность при сжатии и изгибе, пластичность, вязкость разрушения. Кроме того, композиционные материалы с металлической матрицей сохраняют свои прочностные характеристики до более высоких температур, чем материалы с неметаллической основой. Они более влагостойки, негорючи, обладают электрической проводимостью.

Наиболее перспективными материалами для матриц металлических композиционных материалов являются металлы, обладающие небольшой плотностью (А1, Mg, Ti), и сплавы на их основе, а также никель-широко применяемый в настоящее время в качестве основного компонента жаропрочных сплавов. Свойства некоторых композиционных материалов на металлической основе представлены в табл. 13.4.

Материалы с алюминиевой матрицей, нашедшие промышленное применение, в основном армируют стальной прово-

локой (КАС), борным волокном (ВКА) и углеродным волокном (ВКУ). В качестве матрицы используют как технический алюминий (например, АД1), так и сплавы (АМгб, В95, Д20 к др.).

Использование в качестве матрицы сплава (например, В95), упрочняемого термообработкой (закалка и старение), дает дополнительный эффект упрочнения композиции. Однако в направлении оси волокон он невелик, тогда как в поперечном направлении, где свойства определяются в основном свойствами матрицы, достигает 50% (табл. 13.8).

Наиболее дешевым, достаточно эффективным и доступным армирующим материалом является высокопрочная стальная проволока. Так, армирование технического алюминия проволокой из стали ВНС9 диаметром 0,15 мм (а =

= 36(Ю МПа) увеличивает его прочность в 10-12 раз при объемном содержании волокна 25% и в 14-15 раз при увеличении содержания до 40 %, после чего временное сопротивление достигает соответственно 1000-1200 и 1450 МПа. Если для армирования использовать проволоку меньшего диаметра, т. е. большей прочности (CTj =

= 4200 МПа), временное сопротивление композиционного материала увеличится до 1750 МПа. Таким образом, алюминий, армированный стальной проволокой (25-40%), по основным свойствам значительно превосходит даже высоко-

ТАБЛИЦА 13.8. Механические свойства композиционного материала алюминиевый сплав - борные волокна (50 об. %)

Направление нагружения

Ов, МПа

Е, ГПа

без т. 0.

т. 0.

без т. 0.

т. 0.

Вдоль волокон Поперек волокон

Примечание, матрицы (А1 - 1 % термической обрабо ле - 320 \ГПа.

1580 137

Време! Ag - 0.( тки (т.

1670 259

шое с % Si-0.)- 13

232 141

опроти -0,2% 0 МПа

239 148

вление Сг) до , пос-



6,, МПа


15 25 35 45 55 ВО Садсркание Горных далеком, %

Рис. 13.34. Зависимость прочности бороалю-миниевых листов от объемного содержания борных волокон

прочные алюминиевые сплавы и выходит на уровень соответствующих свойств титановых сплавов. При этом плотность композиций находится в пределах 3900-4800 кг/м

Упрочнение алюминия и его сплавов более дорогими волокнами В, С, AljOj повыщает стоимость композиционных материалов, но при этом эффективнее улучшаются некоторые свойства: например, при армировании борными волокнами модуль упругости увеличивается в 3-4 раза, углеродные волокна способствуют снижению плотности. На рис. 13.34 и ниже показано влияние объемного содержания волокон бора на прочность и жесткость композиции алюминий - бор.

Объемное содержание волокон, %...... О 10

Оз,МПа....... 70-140 300-380

£, ГПа....... 70 105

Бор мало разупрочняется с повышением температуры, поэтому композиции, армированные борными волокнами, сохраняют высокую прочность до 400-500 °С. Промышленное применение нашел материал, содержащий 50 об.% непрерывных высокопрочных и высокомодульных волокон бора (ВКА-1). По модулю упругости и временному сопротивлению в интервале температур 20-500 "С он превосходит все стан-

дартные алюминиевые сплавы, в том числе высокопрочные (В95), и сплавы, специально предназначенные для работы при высоких температурах (АК4-1), что нагляднр представлено на рис. 13.35. Высокая демпфирующая способность материала обеспечивает вибропрочность изготовленных из него конструкций. Плотность сплава равна

2650 кг/м

удельная

про-

чность-45 км. Это значительно выше, чем у высокопрочных сталей и титановых сплавов.

Расчеты показали, что замена сплава В95 на титановый сплав при изготовлении лонжерона крыла самолета с подкрепляющими элементами из ВКА-1 увеличивает его жесткость на 45% и дает экономию в массе около 42%.

Композиционные материалы на алюминиевой основе, армированные углеродными волокнами (ВКУ), дешевле и легче, чем материалы с борными волокнами. И хотя они уступают последним по прочности, обладают близкой удельной прочностью (42 км). Однако изготовление композиционных материалов с углеродным упрочнителем связано с большими технологическими трудностями вследствие взаимодействия углерода с металлическими матрицами при нагреве, вызывающего снижение прочности материала. Для устранения этого недостатка применяют спе-

20 30 40 50

500 - 650 700 - 900 900-1140 1100-1400 135 180 190-200 200-257

циальные покрытия углеродных волокон.

Материалы с магниевой матрицей (В КМ) характеризуются меньшей плотностью (1800-2200 кг/м% чем с алюминиевой, при примерно такой же высокой прочности 1000-1200 МПа и поэтому более высокой удельной прочностью. Деформируемые магниевые сплавы (МА2 и др), армированные борным волокном (50 об.%), имеют удельную



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [ 21 ] 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61