Главная  Промышленность 

0 1 2 3 4 [ 5 ] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

ляет число ионов противоположного знака, которые окружают данный ион.

Приведенные ниже значения отношений радиуса металла к радиусу неметалла /?„м и соответствующие им координационные числа вытекают из геометрии упаковки шаров разных диаметров.

Л" ... 8 6 4 2

Rm/«hm 1-0,73 0,73-0,41 0,41-0,22 0,22

Для FeO координационное число будет равно 6, так как указанное соотношение равно 0,54. На рис. 1.14 приведена кристаллическая решетка FeO. Ионы кислорода образуют ГЦК решетку, ионы железа занимают в ней поры. Каждый ион железа окружен шестью ионами кислорода, и, наоборот, каждый ион кислорода окружен шестью ионами железа. В связи с этим в ионных кристаллах нельзя выделить пару ионов, которые можно было бы счиггать молекулой. При испарении такой кристалл распадается на молекулы.

При нагреве соотношение ионных радиусов может изменяться, так как ионный радиус неметалла растет интенсивнее, чем радиус металлического иона. Это приводит к изменению типа кристаллической структуры, т. е. к полиморфизму. Например, у оксида FcjOj при нагреве шпинельная кристаллическая решетка изменяется на ромбоэдрическую решетку (см. п. 14.2).

Энергия связи ионного кристалла по своей величине близка к энергии связи ковалентных кристаллов и превышает энергию связи металлических и тем более молекулярных кристаллов. В связи с этим ионные кристаллы имеют высокую температуру плавления и испарения, высокий модуль упругости и низкие коэффициенты сжимаемости и линейного расширения.

Заполнение энергетических зон вследствие перераспределения электронов делает ионные кристаллы полупроводниками или диэлектриками.

Во многих ионных кристаллах имеется доля ковалентной связи. Под действием электромагнитных полей друг друга происходит поляризация ионов и возникает смешанная ионно-ковалентная связь. Поляризация деформирует электронные зоны, в результате чего ионы теряют сферическую симметрию. С изменением доли ковалентной связи в ионных кристаллах изменяются и свойства. В кристаллах, образованных элементами различных групп АВ", А"В\ А"В, АВ доля ковалентной связи растет от АВ" до АВ. в последних соединениях, образованных элементами четвертой группы, доля ковалентной связи составляет 90% и кристаллы преимугцественно являются ковалентными. Увеличение доли ковалентной связи вызьгоает увеличение электрической проводимости. Кристаллы АВ" - диэлектрики, а кристаллы АВ - полупроводники.

1.3. Фазовый состав сплавов



Рис. 1.14. Кристаллическая решетка FeO: а - схема; б - пространственное изображение

Термин «сплав» в настоящее время имеет более широкое значение, чем во время его появления. Если раньше промышленные материалы, содержащие несколько элементов, получали преимущественно путем сплавления, то сейчас многие материалы получают и другими технологическими способами, например, порошковой металлургией (прессованием твердых частиц и их последующим спеканием при высоких температурах), диффузионным (проникновением одного вещества в другое твердое вещество при высоких температурах); сплавы можно



получить при плазменном напылении, в процессе кристаллизации из паров в вакууме, при электролизе и т. д.

Преимущественное использование в промышленности находят не чистые металлы или неметаллы, а сплавы металлов с металлами или неметаллами.

В сплавах элементы могут различно взаимодействовать между собой, образуя различные по химическому составу, типу связи и строению кристаллические фазы\ Эти кристаллы в зависимости от атомно-кристаллической структуры принято делить на два основных вида: твердые растворы и промежуточные фазы. Твердыми растворами называют кристаллы, в которых сохраняется кристаллическая решетка одного элемента-растворителя. В промежуточных фазах образуется новый тип кристаллической решетки, отличающийся от решеток элементов, его образующих.

Таким образом, помимо классификации кристаллов по видам связи используют классификацию по типам кристаллической решетки. Такая классификация позволяет прогнозировать характер изменения свойств сплава в функции состава.

Твердые растворы. Такие растворы являются кристаллическими фазами переменного состава. Атомы растворенного элемента В размещаются в кристаллической решетке растворителя - элемента А, либо замещая атомы в узлах решетки, либо внедряясь в междоузлия-поры. В первом случае кристаллы называют твердыми растворами замещения, во втором твердыми растворами внедрения (рис. 1.15). Количество замещенных атомов, так же как и количество внедренных, может изменяться в широких пределах, что и приводит к переменной растворимости твердых растворов. Растворимость может быть неограниченной для твердых


а) 6)

Рис. 1.15. Атомно-криСталлическая структура твердого раствора (схема): а - твердый раствор замещения; б - твердый раствор внедрения

растворов замещения и ограниченной для тех и других.

Твердые растворы обозначаются буквами греческого алфавита: а, Р, у и т. д. или А (В), где А растворитель, В-растворенный элемент.

Твердые растворы замещения. Замещение атомов растворителя А атомами растворенного элемента В возможно, если атомные радиусы отличаются не более, чем на 15%. Это условие называют - размерный фактор. В твердых растворах атомы растворенного вещества, как правило, распределяются в решетке растворителя статистически. Вокруг атома растворенного вещества возникают местные искажения пространственной решетки. Эти искажения приводят к изменению свойств и к изменению среднего периода решетки. Растворение элементов с меньшим атомным радиусом, чем атомный радиус растворителя, вызывает уменьшение среднего периода решетки, а с большим радиусом увеличение.

Образование твердых растворов всегда сопровождается увеличением электрического сопротивления и уменьшением температурного коэффициента электрического сопротивления; твердые растворы обычно менее пластичны и всегда более твердые и прочные, чем чистые металлы.

Фазой называется однородная обособленная часть металла или сплава, имеющая одинаковые состав, строение и свойства.

Исключение-твердые растворы на основе ме-



Растворимость элементов в твердом состоянии уменьшается при увеличении различия в атомных радиусах сплавленных элементов и их валентности.

При образовании твердых растворов замещения возможна и неограниченная растворимость элементов в твердом состояний, т. е. когда при любом количественном соотношении сплавляемых элементов все разнородные атомы размещаются в узлах общей пространственной решетки. Неограниченная растворимость наблюдается при соблюдении размерного фактора и если элементы имеют одинаковый тип кристаллической решетки.

Неограниченная растворимость в твердом состоянии наблюдается в сплавах меди с золотом, меди с никелем, германия с кремнием. В полиморфных металлах встречается неограниченная растворимость в пределах одной модификации пространственной решетки. Например, Fe„ дает неограниченный ряд твердых растворов с хромом (ОЦК решетка), а Fe- неограниченный ряд твердых растворов с никелем (ГЦК решетка).

Многие твердые растворы замещения при относительно невысоких температурах способны находиться в упорядоченном состоянии, т. е. вместо статистического распределения разносортных атомов в узлах пространственной решетки атомы одного и другого металла размещаются в совершенно определенном порядке. Такие твердые растворы называют упорядоченными; используется также термин «сверхструктура».

Переход из неупорядоченного в упорядоченное состояние происходит при определенной температуре или в определенном интервале температур. Температура, при которой твердый раствор полностью разупорядочивается, называется точкой Курнакова и обозначается 9к. Упорядочение происходит обычно только при медленном охлаждении твердого раствора из температурной области выше 9.

Упорядоченные твердые растворы встречаются в системах с значительной или неограниченной растворимостью в твердом состоянии; при этом полная упорядоченность возникает при концентрациях твердого раствора, соответствующих простым атомным соотношениям компонентов типа АВ или АВ3. Частичная упорядоченность наблюдается при составах, близких к указанным. Расположение атомов в упорядоченных твердых растворах двух сплавов меди с золотом, составов, соответствующих концентрациям AuCuj и AuCu, показано на рис. 1.16.

Возникновение и исчезновение порядка в расположении атомов твердых растворов сопровождается изменением свойств.

При упорядочении возрастают электропроводность, температурный коэффициент электрического сопротивления, твердость и прочность; снижается пластичность сплава. У ферромагнитных сплавов изменяются магнитные свойства: например, у пермаллоев (магнитные сплавы железа с никелем) при упорядочении в несколько раз снижается магнитная проницаемость. Неко-

Аи Оси

Рис. 1.16. Кристаллическая решетка сплавов меди с золотом:

а - неупорядоченный твердый раствор; б - упорядоченный твердый раствор (сплав состава AuCuj); в -упорядоченный твердый раствор (сплав состава AuCu)



0 1 2 3 4 [ 5 ] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65