Главная  Промышленность 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 [ 40 ] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Она оценивается обрабатываемостью резанием, давлением, свариваемостью, способностью к литью, а также прокаливаемостью, склонностью к деформации и короблению при термической обработке. Технологичность материала имеет важное значение, так как от нее зависят производительность и качество изготовления деталей.

Экономические требования сводятся к тому, чтобы материал имел невысокую стоимость и был доступным. Стали и сплавы по возможности должны содержать минимальное количество легирующих элементов. Использование материалов, содержащих легирующие элементы, должно быть обосновано повышением эксплуатационных свойств деталей.

Экономические требования, так же как и технологические, приобретают особое значение при массовом масштабе производства.

Таким образом, качественный конструкционный материал должен удовлетворять комплексу требований.

7.2. Коиструкционная прочность

материалов

и критерии ее оценки

Конструкционная прочность - комплексная характеристика, включающая сочетание критериев прочности, надежности и долговечности:

Критерии прочности материала выбирают в зависимости от условий его ра-6oTbL Критериями прочности при статистических нагрузках являются временное сопротивление или предел текучести ао2(<т)> характеризующие сопротивление материала пластической деформации. Поскольку при работе большинства деталей пластическая де-

Характеристики сг и ст, используют также для оценки прочности деталей при кратковременных циклических перегрузках и при малом числе циклов (< 10).

формация недопустима, то их несущую способность, как правило, определяют по пределу текучести. Для приближенной оценки статической прочности используют твердость НВ (для стали справедливо эмпирическое соотношение Ов = НВ/Ъ).

Большинство деталей машин испытывает длительные циклические нагрузки. Критерий их прочности-предел выносливости С5р (при симметричном круговом изгибе о j).

По величине выбранных критериев прочности рассчитьшают допустимые рабочие напряжения. При этом, чем больше прочность материала, тем больше допустимые рабочие напряжения и тем самым меньше размеры и масса детали.

Однако повышение уровня прочности материала и, как следствие, рабочих напряжений сопровождается увеличением упругих деформаций

где £-модуль нормальной упругости.

Для ограничения упругой деформации материал должен обладать высоким модулем упругости (или сдвига), являющимся критерием его жесткости. Именно критерии жесткости, а не прочности обусловливают размеры станин станков, корпусов редукторов и других деталей, от которых требуется сохранение точных размеров и формы.

Возможно и противоположное требование. Для пружин, мембран и других чувствительных упругих элементов приборов, наоборот, важно обеспечить большие упругие перемещения. Поскольку Ер = аупр/£, то от материала требуются высокий предел упругости и низкий модуль упругости.

Для материалов, используемых в авиационной и ракетной технике, важное значение имеет эффективность материала по массе. Она оценивается удельными характеристиками: удельной прочностью oKpg) [р - плотность, g -



ускорение свободного падения], удельной жесткостью E/(pg).

Таким образом, в качестве критериев конструкционной прочности выбирают те характеристики, которые наиболее полно отражают прочность в условиях эксплуатации.

Кроме стандартных механических характеристик Ов и Од 2. значения которых определены ГОСТом и оценивают металлургическое и технологическое качество материала, для оценки конструкционной прочности необходимы характеристики прочности при рабочих температурах и в эксплуатационных средах.

Например, для расчета на прочность вала, работающего во влажной атмосфере при 250 °С, необходимы и, Оод, Е для такой температуры, а также а. i, определенный во влажной среде и при нагреве.

Надежность ~ свойство материала противостоять хрупкому разрущению. Хрупкое разрущение вызывает внезапный отказ деталей в условиях эксплуатации. Оно считается наиболее опасным из-за протекания с большой скоростью при напряжениях ниже расчетных, а также возможных аварийных последствий

Для предупреждения хрупкого разрушения конструкционные материалы должны обладать достаточной пластичностью (6, v/) и ударной вязкостью {KCU). Однако эти параметры надежности, определенные на небольших лабораторных образцах без учета условий эксплуатации конкретной детали, достаточно показательны лишь для мягких малопрочных материалов. Между тем стремление к уменьшению металлоемкости конструкций ведет к более широкому применению высокопрочных и, как правило, менее пластичных материалов с повышенной склонностью к хрупкому разрушению. Необходимо также учиты-

вать то, что в условиях эксплуатации действуют факторы, дополнительно снижающие их пластичность, вязкость и увеличивающие опасность хрупкого разрушения. К таким факторам относятся концентраторы напряжений (надрезы), понижение температуры, динамические нагрузки, увеличение размеров деталей (масштабный фактор).

Для того чтобы избежать внезапных поломок в условиях эксплуатации, необходимо учитывать трещиностойкость материала. Трещиностойкость- группа параметров надежности, характеризующих способность материала тормозить развитие трещины.

Количественная оценка трещиностойкости основывается на линейной механике разрушения. В соответствии с ней очагами разрушения высокопрочных материалов служат небольшие трещины эксплуатационного или технологического происхождения (могут возникать при сварке, термической обработке), а также трещиноподобные дефекты (неметаллические включения, скопления дислокаций и т. п.). Трещины являются острыми концентраторами напряжений, местные (локальные) напряжения в вершине которых могут во много раз превышать средние расчетные напряжения (рис. 7.1).

Для трещины длиной I и радиусом г напряжение в вершине

(7.1)

Известно немало аварий из-за хрупкого разрушения корпусов судов, ферм мостов, трубопроводов и других конструкций.


Рис. 7.1. Концентрация напряжений вблизи эллиптической трещины



Концентрация напряжений тем больше, чем длиннее трещина и острее ее вершина.

Для пластичных материалов опасность таких дефектов невелика. В результате перемещения дислокаций у вершины трещины протекает местная пластическая деформация, которая вызывает релаксацию (снижение) локальных напряжений и их выравнивание. К тому же увеличение плотности дислокаций и вакансий в вершине трещины сопровождается ее затуплением, и дефект перестает играть роль острого концентратора напряжений.

Хрупкие материалы, наоборот, чрезвычайно чувствительны к надрезам. В силу того, что дислокации заблокированы и пластическая деформация невозможна, при увеличении средних напряжений локальные напряжения о"" повышаются настолько, что вызывают разрыв межатомных связей и развитие трещины. Рост трещины не тормозится, как в пластичных материалах, а, наоборот, ускоряется. После достижения некоторой критической величины наступает самопроизвольный лавинообразный рост трещины, вызывающей хрупкое разрушение.

Так как высокопрочные материалы обладают определенной пластичностью, то для них реальную опасность представляют трещины не любых размеров, а только критической длины /кр. Подрастание трещины до /кр тормозится в них местной пластической деформацией. Но при определенном сочетании рабочего напряжения и длины дефекта равновесное положение трещины нарушается, и происходит самопроизвольное разрушение.

Оценку надежности высокопрочных материалов по размеру допустимого дефекта (меньше критического) проводят по критериям Ж. Ирвина. Им предложено два критерия трещиностойкости, из которых наибольшее применение имеет критерий К. Критерий К называют коэффициентом интенсивности напряжений в вершине трещины. Он определяет растягивающие напряжения в любой точке (рис. 7.2) впереди вершины трешины:

а = К/\/2юс.

(7.2)

Знаменатель дроби обращается в единицу при X « 0,16, поэтому К численно равен на расстоянии ~ 0,16 мм от вершины трещины.

Критерий К для наиболее жесткого нагру-жения (плоская деформация растяжением)

Трещина

Рис. 7.2. Зависимость напряжения от расстояния от вершины трещины

обозначают Kj, а при достижении критического значения, когда стабильная трещина переходит в нестабильную,-К i. Критерий K,. показывает, какого значения (интенсивности) достигает напряжение вблизи вершины трещины в момент разрушения. Он связывает приложенное среднее напряжение с критической длиной трещины:

Ku = Ocpl/anV (7.3)

где а-безразмерный коэффициент, характеризующий геометрию трещины.

Из соотношения (7.3) следует, что имеет размерность МПа-мм.

Значение К у,, определяют экспериментально на образцах с надрезом и с заранее созданной на дне этого надреза усталостной трещиной (рис. 7.3). Для расчета К при на-гружении образца фиксируют усилие в момент подрастания трещины на некоторую величину и перехода ее к нестабильному распространению.

Величина К зависит от степени пластической деформации у вершины трещины (ее затуплении) и характеризует сопротивление развитию вязкой трещины. По этой причине критерий называют вязкостью разрушения. Чем

Рис. 7.3. Образец для определения Ki




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 [ 40 ] 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65